US009405699B1

a2 United States Patent 10) Patent No.: US 9,405,699 B1
Feldmann et al. 45) Date of Patent: Aug. 2, 2016
(54) SYSTEMS AND METHODS FOR OPTIMIZING 2010/0211573 Al* 82010 Sekiguchi GO6F 17/30336
COMPUTER PERFORMANCE 707/747
2011/0283082 Al* 112011 McKenney GOGF 12/1018
. . .. 711/202

(71) Applicant: Dell Software Inc., Aliso Viejo, CA 2012/0036134 Al 272012 Malakhov
(Us) 2012/0323970 Al* 12/2012 Larson GOGF 17/30949
707/800
(72) Inventors: Christine Feldmann, Mississauga (CA); 2012/0323972 Al* 12/2012 Ostrovsky GOGF 17/30348
Gordon H. Tyler, Mississauga (CA) 707/803

OTHER PUBLICATIONS

(73) Assignee: Dell Software Inc., Aliso Viejo, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 167 days.

(21) Appl. No.: 14/472,329

(22) Filed: Aug. 28,2014
(51) Imnt.ClL
GO6F 12/10 (2016.01)
GO6F 17/30 (2006.01)
GO6F 12/08 (2016.01)
(52) US.CL
CPC ... GO6F 12/1018 (2013.01); GOG6F 12/0864

(2013.01); GO6F 17/3033 (2013.01); GO6F
17/30628 (2013.01); GO6F 17/30949 (2013.01);
GO6F 2212/6042 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,373,480 B2

8,429,143 B2
2003/0009482 Al*

5/2008 Cypher
4/2013 Ellison et al.
1/2003 Benerjee GOG6F 9/5016

Stack Overflow, “Chosing a Suitable Table Size for a Hash,” http://
stackoverflow.com, Nov. 13, 2008, 2 pages.

Griswold, William G. et al., “The Design and Implementation of
Dynamic Hashing for Sets and Tables in Icon,” Software-Practice and
Experience, vol. 23(4), Apr. 1993, pp. 351-367.

* cited by examiner

Primary Examiner — Michael Krofcheck
(74) Attorney, Agent, or Firm — Winstead PC

(57) ABSTRACT

In one embodiment, a method includes initiating execution of
an application, the application utilizing a hash table data
structure to map a plurality of keys to a plurality of values.
The method further includes, the application checking a
memory for a cached hash table capacity indicator from a
previous run of the application. In addition, the method
includes, responsive to no cached hash table capacity indica-
tor being found in the memory: creating a first hash table with
an initial capacity; populating the first hash table with a plu-
rality of runtime entries; determining an improved hash table
capacity based, at least in part, on a quantity of the plurality of
runtime entries; creating a second hash table with the
improved hash table capacity; copying the plurality of runt-
ime entries to the second hash table; and the application using
the second hash table in place of the first hash table.

20 Claims, 3 Drawing Sheets

-~

—

INITIATE EXECUTION OF
APPLICATION

CHECK A MEMORY FOR A
CACHED HASH TABLE CAPACITY
INDICATOR

204
CACHED
INDICATOR FOUND?
208
VE:

CREATE A HASH TABLE WITH A
CAPACITY THAT IS BASED, AT
LEAST IN PART, ON THE CACHED
HASH TABLE CAPACITY
INDICATOR

CREATE A HASH TABLE VIA AN
OPTIMAL-SIZE DETERMINATION

210

CONTINUE EXECUTION
212

HASH TABLE NO
SIZE UPDATE?
214
YES
UPDATE CACHED INDICATOR
216

U.S. Patent Aug. 2, 2016 Sheet 1 of 3 US 9,405,699 B1

INFORMATION HANDLING SYSTEM
100
COMPUTER RESOURCES
128
INTERFACE PROCESSOR
106 102
STORAGE <
108 =
i
MEMORY
104
I 4
| = '
| I
| |
L _p{ APPLICATION |,

FIG. 1

U.S. Patent Aug. 2, 2016 Sheet 2 of 3 US 9,405,699 B1

2
"~

INITIATE EXECUTION OF
APPLICATION
202

v

CHECK A MEMORY FOR A
CACHED HASH TABLE CAPACITY
INDICATOR
204

CACHED
INDICATOR FOUND?
206

YES: NO

CREATE A HASH TABLE WITH A l
CAPACITY THAT IS BASED, AT CREATE A HASH TABLE VIA AN
LEAST IN PART, ON THE CACHED OPTIMAL-SIZE DETERMINATION

HASH TABLE CAPACITY PROCESS
INDICATOR 210
208
I v
CONTINUE EXECUTION |
212

HASH TABLE
SIZE UPDATE?
214

YES

4

UPDATE CACHED INDICATOR
216

FIG. 2

U.S. Patent Aug. 2, 2016 Sheet 3 of 3

START
300 -
\

US 9,405,699 B1

CREATE A FIRST HASH TABLE
WITH AN INITIAL CAPACITY
302

v

POPULATE THE FIRST HASH

304

TABLE WITH RUNTIME ENTRIES

READY
TO OPTIMIZE?
306

YES
A 4

NO

TABLE CAPACITY
308

DETERMINE AN IMPROVED HASH

Sl

YES NO.

v

v

CREATE A SECOND HASH TABLE CONTINUE USING THE FIRST

WITH THE IMPROVED HASH
TABLE CAPACITY
314

HASH TABLE
312

v

COPY EACH ENTRY IN THE FIRST
HASH TABLE TO THE SECOND
HASH TABLE
316

v

USE THE SECOND HASH TABLE IN
PLACE OF THE FIRST HASH
TABLE
318

v

STORE AN INDICATOR OF THE
IMPROVED HASH TABLE

CAPACITY
320

FIG. 3

US 9,405,699 B1

1
SYSTEMS AND METHODS FOR OPTIMIZING
COMPUTER PERFORMANCE

BACKGROUND

1. Technical Field

The present disclosure relates generally to computers and
more particularly, but not by way of limitation, to systems and
methods for optimizing computer performance.

2. History of Related Art

Software applications often store and organize data using
data structures such as linked lists, hash tables, trees, etc. For
any given software application, selection of a data structure to
contain particular data typically involves weighing perfor-
mance considerations such as, among other things, storage
efficiency, desired data operations, a time complexity of the
desired data operations, and available computing resources.
Some data structures require that a certain amount of memory
be allocated at a time of data-structure instantiation. In many
cases, however, memory requirements are not known at the
time of instantiation.

Moreover, as the value and use of information continues to
increase, individuals and businesses seek additional ways to
process and store information. One option available to users is
information handling systems. An information handling sys-
tem generally processes, compiles, stores, and/or communi-
cates information or data for business, personal, or other
purposes thereby allowing users to take advantage of the
value of the information. Because technology and informa-
tion handling needs and requirements vary between different
users or applications, information handling systems may also
vary regarding what information is handled, how the infor-
mation is handled, how much information is processed,
stored, or communicated, and how quickly and efficiently the
information may be processed, stored, or communicated. The
variations in information handling systems allow for infor-
mation handling systems to be general or configured for a
specific user or specific use such as financial transaction
processing, airline reservations, enterprise data storage, or
global communications. In addition, information handling
systems may include a variety of hardware and software
components that may be configured to process, store, and
communicate information and may include one or more com-
puter systems, data storage systems, and networking systems.

SUMMARY OF THE INVENTION

In one embodiment, a method is performed by a computer
system comprising computer hardware. The method includes
initiating execution of an application in an execution environ-
ment of the computer system, the application utilizing a hash
table data structure to map a plurality of keys to a plurality of
values. The method further includes, during the execution, the
application checking a memory for a cached hash table capac-
ity indicator from a previous run of the application in the
execution environment. In addition, the method includes,
responsive to no cached hash table capacity indicator being
found in the memory: creating a first hash table with an initial
capacity; populating the first hash table with a plurality of
runtime entries; determining an improved hash table capacity
based, at least in part, on a quantity of the plurality of runtime
entries, such that the improved hash table capacity is a
reduced capacity relative to the initial capacity; creating a
second hash table with the improved hash table capacity;
copying the plurality of runtime entries to the second hash
table; and the application using the second hash table in place
of the first hash table.

10

35

40

45

50

55

60

65

2

In one embodiment, an information handling system
includes a processing unit, wherein the processing unit is
operable to implement a method. The method includes initi-
ating execution of an application in an execution environment
of'the computer system, the application utilizing a hash table
data structure to map a plurality of keys to a plurality of
values. The method further includes, during the execution, the
application checking a memory for a cached hash table capac-
ity indicator from a previous run of the application in the
execution environment. In addition, the method includes,
responsive to no cached hash table capacity indicator being
found in the memory: creating a first hash table with an initial
capacity; populating the first hash table with a plurality of
runtime entries; determining an improved hash table capacity
based, at least in part, on a quantity of the plurality of runtime
entries, such that the improved hash table capacity is a
reduced capacity relative to the initial capacity; creating a
second hash table with the improved hash table capacity;
copying the plurality of runtime entries to the second hash
table; and the application using the second hash table in place
of the first hash table.

In one embodiment, a computer-program product includes
a non-transitory computer-usable medium having computer-
readable program code embodied therein. The computer-
readable program code is adapted to be executed to imple-
ment a method. The method includes initiating execution of
an application in an execution environment of the computer
system, the application utilizing a hash table data structure to
map a plurality of keys to a plurality of values. The method
further includes, during the execution, the application check-
ing a memory for a cached hash table capacity indicator from
a previous run of the application in the execution environ-
ment. In addition, the method includes, responsive to no
cached hash table capacity indicator being found in the
memory: creating a first hash table with an initial capacity;
populating the first hash table with a plurality of runtime
entries; determining an improved hash table capacity based,
atleastin part, ona quantity of the plurality of runtime entries,
such that the improved hash table capacity is a reduced capac-
ity relative to the initial capacity; creating a second hash table
with the improved hash table capacity; copying the plurality
of runtime entries to the second hash table; and the applica-
tion using the second hash table in place of the first hash table.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the method and appa-
ratus of the present invention may be obtained by reference to
the following Detailed Description when taken in conjunc-
tion with the accompanying Drawings wherein:

FIG. 1 illustrates an example of an information handling
system.

FIG. 2 illustrates an example of a process for optimizing
hash table size.

FIG. 3 illustrates an example of a process for creating a
hash table via an optimal-size determination.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

During execution, a software application may create, or
instantiate, various data structures to contain particular data.
One example of such a data structure is a hash table. In
addition to having its ordinary meaning, a hash table may be
considered to include a data structure that maps a plurality of
keys to a plurality of values via a hash function. Each key/
value pair may be considered a hash table entry. In some

US 9,405,699 B1

3

implementations, an instance of a hash table is created using
certain initialization parameters such as an initial capacity
and a load factor. The initial capacity may be a number of
buckets, or blocks, in the hash table. The load factor may be an
indicator of how full the hash table is allowed to become
before its capacity is automatically increased via rehashing.

In many cases, it may not be known, at the time the hash
table is instantiated, how many entries the hash table will
have. After instantiation, the hash table may be populated
with runtime entries that are particular to an execution envi-
ronment. The quantity of runtime entries can be highly vari-
able. For example, the software application may be used for a
variety of different clients or customers that use the software
application in different ways, have different requirements,
and/or the like. Thus, it may not be known how to best set the
initial capacity of the hash table for the execution environ-
ment.

One example of such a software application is an agent
used for profiling or monitoring a target computer program.
This profiling can include memory analysis, performance
analysis, and/or coverage analysis of the target computer
program, among other features. According to this example,
the agent may instrument, for example, one or more routines
of the target computer program. For instance, if the target
computer program is expressed in JAVA, the agent may
instrument each method of each class. In an example, the
agent may store information related to each class that is
instrumented as an entry in a hash table. However, according
to this example, it may not be known at the time of instantia-
tion of the hash table how many classes will be instrumented.
Thus, in similar fashion to the description above, an appro-
priate size of the hash table can depend on the execution
environment of the agent. According to this example, the
execution environment can include one or more of an infor-
mation handling system on which the agent is executed, the
target computer program being executed, and/or other sys-
tems or components.

One approach for addressing the above-described sizing
problem is to allow dynamic resizing to occur via rehashing.
For example, in some implementations, a particular hash
table may be rehashed when the number of entries in the hash
table exceeds the product of the load factor and the current
capacity. As part of rehashing, structures internal to the par-
ticular hash table (e.g., a backing array) can be rebuilt so that
the hash table has, for example, approximately twice the
number of buckets or blocks. However, relying exclusively on
rehashing to correctly size the particular hash table can have
certain disadvantages. Rehashing can be computationally
expensive and thus adversely affect hash table operations and
overall computer performance. Oftentimes, repeated rehash-
ing may occur if the initial capacity is grossly deficient,
thereby further aggravating the problem. Another approach
for addressing the above-described sizing problem is to give
the particular hash table an initial capacity that is deemed
large enough to prevent any need to rehash. However, this
approach wastes memory and increases iteration time over
collection views of the hash table, thereby adversely affecting
performance of the application. In many cases, such a large
capacity may not be needed.

The present disclosure describes examples of optimally
sizing a data structure such as a hash table. In certain embodi-
ments, upon an initial run of a software application in a given
execution environment, a temporary hash table can be cre-
ated, or instantiated, with an initial capacity that is large
enough to meet, for example, most or all anticipated needs. In
certain embodiments, an improved hash table capacity can be
determined based, at least in part, on a number of runtime

10

15

20

25

30

35

40

45

50

55

60

65

4

entries with which the temporary hash table is populated
during execution. Subsequently, in many cases, a second hash
table can be created, or instantiated, with the improved hash
table capacity. Advantageously, in certain embodiments,
memory utilization can thereby be optimized and repetitive
rehashing can be avoided. In addition, in various embodi-
ments, an indicator of the improved hash table capacity can be
stored. Advantageously, in certain embodiments, the indica-
tor can be accessed and used in subsequent executions of the
software application in the execution environment to opti-
mally size a hash table at the time of instantiation.

For purposes of this disclosure, an information handling
system may include any instrumentality or aggregate of
instrumentalities operable to compute, calculate, determine,
classify, process, transmit, receive, retrieve, originate, switch,
store, display, communicate, manifest, detect, record, repro-
duce, handle, or utilize any form of information, intelligence,
or data for business, scientific, control, or other purposes. For
example, an information handling system may be a personal
computer (e.g., desktop or laptop), tablet computer, mobile
device (e.g., personal digital assistant (PDA) or smart phone),
server (e.g., blade server or rack server), a network storage
device, or any other suitable device and may vary in size,
shape, performance, functionality, and price. The information
handling system may include random access memory
(RAM), one or more processing resources such as a central
processing unit (CPU) or hardware or software control logic,
ROM, and/or other types of nonvolatile memory. Additional
components of the information handling system may include
one or more disk drives, one or more network ports for com-
municating with external devices as well as various input and
output (I/O) devices, such as a keyboard, a mouse, touch-
screen and/or a video display. The information handling sys-
tem may also include one or more buses operable to transmit
communications between the various hardware components.

FIG. 1 illustrates an example of an information handling
system 100. The information handling system 100 includes
anapplication 111 operable to execute on computer resources
128. In particular embodiments, the information handling
system 100 may perform one or more steps of one or more
methods described or illustrated herein. In particular embodi-
ments, one or more computer systems may provide function-
ality described or illustrated herein. In particular embodi-
ments, encoded software running on one or more computer
systems may perform one or more steps of one or more
methods described or illustrated herein or provide function-
ality described or illustrated herein.

The components of the information handling system 100
may comprise any suitable physical form, configuration,
number, type and/or layout. As an example, and not by way of
limitation, the information handling system 100 may com-
prise an embedded computer system, a system-on-chip
(SOC), a single-board computer system (SBC) (such as, for
example, a computer-on-module (COM) or system-on-mod-
ule (SOM)), a desktop computer system, a laptop or notebook
computer system, an interactive kiosk, a mainframe, a mesh
of computer systems, a mobile telephone, a personal digital
assistant (PDA), a wearable or body-borne computer, a
server, or a combination of two or more of these. Where
appropriate, the information handling system 100 may
include one or more computer systems; be unitary or distrib-
uted; span multiple locations; span multiple machines; or
reside in a cloud, which may include one or more cloud
components in one or more networks.

In the depicted embodiment, the information handling sys-
tem 100 includes a processor 102, memory 104, storage 108,
interface 106, and bus 136. Although a particular information

US 9,405,699 B1

5

handling system is depicted having a particular number of
particular components in a particular arrangement, this dis-
closure contemplates any suitable information handling sys-
tem having any suitable number of any suitable components
in any suitable arrangement.

Processor 102 may be a microprocessor, controller, or any
other suitable computing device, resource, or combination of
hardware, software and/or encoded logic operable to execute,
either alone or in conjunction with other components, (e.g.,
memory 104), the application 111. Such functionality may
include providing various features discussed herein. In par-
ticular embodiments, processor 102 may include hardware
for executing instructions, such as those making up the appli-
cation 111. As an example and not by way of limitation, to
execute instructions, processor 102 may retrieve (or fetch)
instructions from an internal register, an internal cache,
memory 104, or storage 108; decode and execute them; and
then write one or more results to an internal register, an
internal cache, memory 104, or storage 108.

In particular embodiments, processor 102 may include one
or more internal caches for data, instructions, or addresses.
This disclosure contemplates processor 102 including any
suitable number of any suitable internal caches, where appro-
priate. As an example and not by way of limitation, processor
102 may include one or more instruction caches, one or more
data caches, and one or more translation lookaside buffers
(TLBs). Instructions in the instruction caches may be copies
of instructions in memory 104 or storage 108 and the instruc-
tion caches may speed up retrieval of those instructions by
processor 102. Data in the data caches may be copies of data
in memory 104 or storage 108 for instructions executing at
processor 102 to operate on; the results of previous instruc-
tions executed at processor 102 for access by subsequent
instructions executing at processor 102, or for writing to
memory 104, or storage 108; or other suitable data. The data
caches may speed up read or write operations by processor
102. The TLBs may speed up virtual-address translations for
processor 102. In particular embodiments, processor 102 may
include one or more internal registers for data, instructions, or
addresses. Depending on the embodiment, processor 102
may include any suitable number of any suitable internal
registers, where appropriate. Where appropriate, processor
102 may include one or more arithmetic logic units (ALUs);
be a multi-core processor; include one or more processors
102; or any other suitable processor.

Memory 104 may be any form of volatile or non-volatile
memory including, without limitation, magnetic media, opti-
cal media, random access memory (RAM), read-only
memory (ROM), flash memory, removable media, or any
other suitable local or remote memory component or compo-
nents. In particular embodiments, memory 104 may include
random access memory (RAM). This RAM may be volatile
memory, where appropriate. Where appropriate, this RAM
may be dynamic RAM (DRAM) or static RAM (SRAM).
Moreover, where appropriate, this RAM may be single-
ported or multi-ported RAM, or any other suitable type of
RAM or memory. Memory 104 may include one or more
memories 104, where appropriate. Memory 104 may store
any suitable data or information utilized by the information
handling system 100, including software embedded in a com-
puter readable medium, and/or encoded logic incorporated in
hardware or otherwise stored (e.g., firmware). In particular
embodiments, memory 104 may include main memory for
storing instructions for processor 102 to execute or data for
processor 102 to operate on. In particular embodiments, one
or more memory management units (MMUs) may reside

20

30

40

45

50

6

between processor 102 and memory 104 and facilitate
accesses to memory 104 requested by processor 102.

As an example and not by way of limitation, the informa-
tion handling system 100 may load instructions from storage
108 or another source (such as, for example, another com-
puter system) to memory 104. Processor 102 may then load
the instructions from memory 104 to an internal register or
internal cache. To execute the instructions, processor 102
may retrieve the instructions from the internal register or
internal cache and decode them. During or after execution of
the instructions, processor 102 may write one or more results
(which may be intermediate or final results) to the internal
register or internal cache. Processor 102 may then write one
ormore of those results to memory 104. In particular embodi-
ments, processor 102 may execute only instructions in one or
more internal registers or internal caches or in memory 104
(as opposed to storage 108 or elsewhere) and may operate
only on data in one or more internal registers or internal
caches or in memory 104 (as opposed to storage 108 or
elsewhere).

In particular embodiments, storage 108 may include mass
storage for data or instructions. As an example and not by way
of limitation, storage 108 may include a hard disk drive
(HDD), a floppy disk drive, flash memory, an optical disc, a
magneto-optical disc, magnetic tape, or a Universal Serial
Bus (USB) drive or a combination of two or more of these.
Storage 108 may include removable or non-removable (or
fixed) media, where appropriate. Storage 108 may be internal
or external to the information handling system 100, where
appropriate. In particular embodiments, storage 108 may be
non-volatile, solid-state memory. In particular embodiments,
storage 108 may include read-only memory (ROM). Where
appropriate, this ROM may be mask-programmed ROM, pro-
grammable ROM (PROM), erasable PROM (EPROM), elec-
trically erasable PROM (EEPROM), electrically alterable
ROM (EAROM), or flash memory or a combination of two or
more of these. Storage 108 may take any suitable physical
form and may comprise any suitable number or type of stor-
age. Storage 108 may include one or more storage control
units facilitating communication between processor 102 and
storage 108, where appropriate.

In particular embodiments, interface 106 may include
hardware, encoded software, or both providing one or more
interfaces for communication (such as, for example, packet-
based communication) among any networks, any network
devices, and/or any other computer systems. As an example
and not by way of limitation, communication interface 106
may include a network interface controller (NIC) or network
adapter for communicating with an Ethernet or other wire-
based network and/or a wireless NIC (WNIC) or wireless
adapter for communicating with a wireless network.

Depending on the embodiment, interface 106 may be any
type of interface suitable for any type of network for which
information handling system 100 is used. As an example and
not by way of limitation, information handling system 100
can include (or communicate with) an ad-hoc network, a
personal area network (PAN), a local area network (LAN), a
wide area network (WAN), a metropolitan area network
(MAN), or one or more portions of the Internet or a combi-
nation of two or more of these. One or more portions of one or
more of these networks may be wired or wireless. As an
example, information handling system 100 can include (or
communicate with) a wireless PAN (WPAN) (such as, for
example, a BLUETOOTH WPAN), a WI-FI network, a WI-
MAX network, an LTE network, an LTE-A network, a cellu-
lar telephone network (such as, for example, a Global System
for Mobile Communications (GSM) network), or any other

US 9,405,699 B1

7

suitable wireless network or a combination of two or more of
these. The information handling system 100 may include any
suitable interface 106 for any one or more of these networks,
where appropriate.

In some embodiments, interface 106 may include one or
more interfaces for one or more I/O devices. One or more of
these I/O devices may enable communication between a per-
son and the information handling system 100. As an example
and not by way of limitation, an I/O device may include a
keyboard, keypad, microphone, monitor, mouse, printer,
scanner, speaker, still camera, stylus, tablet, touchscreen,
trackball, video camera, another suitable I/O device or a
combination of two or more of these. An 1/O device may
include one or more sensors. Particular embodiments may
include any suitable type and/or number of 1/0 devices and
any suitable type and/or number of interfaces 106 for them.
Where appropriate, interface 106 may include one or more
drivers enabling processor 102 to drive one or more of these
1/0 devices. Interface 106 may include one or more interfaces
106, where appropriate.

Bus 136 may include any combination of hardware, soft-
ware embedded in a computer readable medium, and/or
encoded logic incorporated in hardware or otherwise stored
(e.g., firmware) to couple components of the information
handling system 100 to each other. As an example and not by
way of limitation, bus 136 may include an Accelerated
Graphics Port (AGP) or other graphics bus, an Enhanced
Industry Standard Architecture (EISA) bus, a front-side bus
(FSB),a HYPERTRANSPORT (HT) interconnect, an Indus-
try Standard Architecture (ISA) bus, an INFINIBAND inter-
connect, a low-pin-count (LPC) bus, a memory bus, a Micro
Channel Architecture (MCA) bus, a Peripheral Component
Interconnect (PCI) bus, a PCI-Express (PCI-X) bus, a serial
advanced technology attachment (SATA) bus, a Video Elec-
tronics Standards Association local (VLB) bus, or any other
suitable bus or a combination of two or more of these. Bus 136
may include any number, type, and/or configuration of buses
136, where appropriate. In particular embodiments, one or
more buses 136 (which may each include an address bus and
a data bus) may couple processor 102 to memory 104. Bus
136 may include one or more memory buses.

Herein, reference to a computer-readable storage medium
encompasses one or more tangible computer-readable stor-
age media possessing structures. As an example and not by
way of limitation, a computer-readable storage medium may
include a semiconductor-based or other integrated circuit
(IC) (such, as for example, a field-programmable gate array
(FPGA) or an application-specific IC (ASIC)), ahard disk, an
HDD, a hybrid hard drive (HHD), an optical disc, an optical
disc drive (ODD), a magneto-optical disc, a magneto-optical
drive, a floppy disk, a floppy disk drive (FDD), magnetic tape,
a holographic storage medium, a solid-state drive (SSD), a
RAM-drive, a SECURE DIGITAL card, a SECURE DIGI-
TAL drive, a flash memory card, a flash memory drive, or any
other suitable tangible computer-readable storage medium or
a combination of two or more of these, where appropriate.

Particular embodiments may include one or more com-
puter-readable storage media implementing any suitable stor-
age. In particular embodiments, a computer-readable storage
medium implements one or more portions of processor 102
(such as, for example, one or more internal registers or
caches), one or more portions of memory 104, one or more
portions of storage 108, or a combination of these, where
appropriate. In particular embodiments, a computer-readable
storage medium implements RAM or ROM. In particular
embodiments, a computer-readable storage medium imple-

25

30

40

45

55

8

ments volatile or persistent memory. In particular embodi-
ments, one or more computer-readable storage media
embody encoded software.

Herein, reference to encoded software may encompass one
or more applications, bytecode, one or more computer pro-
grams, one or more executables, one or more instructions,
logic, machine code, one or more scripts, or source code, and
vice versa, where appropriate, that have been stored or
encoded in a computer-readable storage medium. In particu-
lar embodiments, encoded software includes one or more
application programming interfaces (APIs) stored or encoded
in a computer-readable storage medium. Particular embodi-
ments may use any suitable encoded software written or
otherwise expressed in any suitable programming language
or combination of programming languages stored or encoded
in any suitable type or number of computer-readable storage
media. In particular embodiments, encoded software may be
expressed as source code or object code. In particular
embodiments, encoded software is expressed in a higher-
level programming language, such as, for example, C, Perl, or
a suitable extension thereof. In particular embodiments,
encoded software is expressed in a lower-level programming
language, such as assembly language (or machine code). In
particular embodiments, encoded software is expressed in
JAVA. In particular embodiments, encoded software is
expressed in Hyper Text Markup Language (HTML), Exten-
sible Markup Language (XML), or other suitable markup
language.

In certain embodiments, the application 111 is operable to
execute on the information handling system 100 in the fash-
ion described above. In some embodiments, the application
111 can be an agent that instruments a target program as
described above. The application 111 can create instances of
data structures such as, for example, hash tables, in the
memory 104. In certain embodiments, the application 111 is
operable to establish, or update, an application cache 132
during a run in an execution environment. In general, the
execution environment of the application 111 can include the
information handling system 100, data or computer programs
to be operated on by the application 111 during execution,
and/or other components or runtime conditions. The applica-
tion cache 132 can be represented, for example, in a database,
flat file, and/or the like.

More particularly, the application cache 132 can be used to
persistently store, for example, a size indicator for a data
structure such as a hash table. For example, during an initial
run in the execution environment, the application cache 132
may be non-existent or empty. During the initial run, the
application 111 can determine an improved or optimized hash
table capacity and store an indicator of the improved hash
table capacity in the application cache 132. The indicator can
be updated during execution. Example interoperability of the
application 111 and the application cache 132 will be
described in greater detail with respect to FIGS. 2-3.

FIG. 2 illustrates an example of a process 200 for optimiz-
ing hash table size. The process 200 can be implemented by
any system that can execute software applications. Although
any number of systems, in whole or in part, can implement the
process 200, to simplify discussion, the process 200 will be
described in relation to the information handling system 100
of FIG. 1.

At block 202, the information handling system 100 ini-
tiates execution of the application 111. At block 204, the
application 111 checks a memory such as, for example, the
application cache 132, for a cached hash table capacity indi-
cator. In some embodiments, the decision block 204 can
include determining whether the application cache 132 has

US 9,405,699 B1

9

been established. In some embodiments, the existence of a
cached hash table capacity indicator in the application cache
means that the application 111 has previously executed in the
execution environment. In some cases, such as upon an initial
run of the application 111, the application cache 132 may be
nonexistent or empty. In other cases, even if the application
cache 132 is nonempty, it may lack a hash table capacity
indicator for the execution environment.

At decision block 206, the application 111 determines
whether a cached hash table capacity indicator for the execu-
tion environment has been found. If so, at block 208, the
application 211 creates, or instantiates, a hash table with an
initial capacity that is based, at least in part, on the cached
hash table capacity indicator. For example, in some embodi-
ments, the cached hash table capacity indicator may be a
specified number of buckets or blocks. In such cases, the
specified number can be used as the initial capacity of the
hash table. The application 211 may also establish a load
factor for the hash table (e.g., 0.75). The hash table can be
created, for example, in the memory 104.

If it is determined at the decision block 206 that a cached
hash table capacity indicator has not been found, at block 210,
the application 111 creates a hash table via an optimal-size
determination process. In general, the block 210 can include
updating the application cache 132 to include a cached hash
table capacity indicator. In many cases, the block 210 can
include establishing the application cache 132. An example of
functionality that can be performed at the block 210 will be
described with respect to FIG. 3.

At block 212, the application 111 continues execution. At
decision block 214, the application 111 determines whether a
hash table size update should occur. In certain embodiments,
the application 111 can periodically update the cached hash
table capacity indicator based on, for example, runtime
changes to a number of entries in the hash table. In some
embodiments, the update can occur at certain time intervals,
responsive to an update to the hash table, and/or responsive to
other runtime events or conditions. In some embodiments, the
blocks 214-216 can be omitted, modified such that, for
example, only a single update occurs during execution of the
application 111, and/or the like. In a typical embodiment, the
process 200 continues to execute blocks 212-216 as described
above until execution concludes or is terminated or other stop
criteria is met.

FIG. 3 illustrates an example of a process 300 for creating
a hash table via an optimal-size determination. In various
embodiments, the process 300 can be performed as all or part
of the block 210 of FIG. 2. The process 300 can be imple-
mented by any system that can execute software applications.
Although any number of systems, in whole or in part, can
implement the process 300, to simplify discussion, the pro-
cess 300 will be described in relation to the information
handling system 100 of FIG. 1.

At block 302, the application 111 creates a first hash table
with an initial capacity. In general, the block 302 can include
instantiating the first hash table, for example, using initializa-
tion parameters such as an initial capacity and a load factor.
The initial capacity can be, for example, a very large capacity
deemed sufficient to cover most or all uses of the application
111. The first hash table can be created, for example, in the
memory 104. At block 304, the application 111 populates the
first hash table with runtime entries.

At decision block 306, it is determined whether the appli-
cation 111 is ready to optimize hash table capacity. For
example, in various embodiments, the application 111 may be
ready to optimize at a point when the first hash table is
deemed to be sufficiently populated (e.g., fully populated or

20

25

30

40

45

50

55

10

mostly populated). In various cases, the first hash table may
be deemed to be sufficiently populated as a result of the
application 111 reaching a certain step or phase of an algo-
rithm (e.g., a certain segment of code), a measurable slow-
down to population of the hash table (e.g., deceleration), the
passage of a certain amount of time, and/or other factors. If it
is determined at the decision block 306 that the application
111 is not ready to optimize hash table capacity, the process
300 returns to block 304 and proceeds as described above.
Otherwise, if it is determined at the decision block 306 that
the application 111 is ready to optimize hash table capacity,
the process 300 proceeds to block 308.

At block 308, the application 111 determines an improved
hash table capacity. In certain embodiments, the improved
hash table capacity may be calculable from a current number
of entries in the first hash table. For example, in some imple-
mentations, the improved hash table capacity could be the
current number of entries divided by a current load factor
(e.g., 0.75). The improved hash table capacity can also be
determined in other suitable ways.

At decision block 310, the application 111 determines
whether a hash table resizing operation should occur. For
example, in some embodiments, the decision block 310
involves the application 111 comparing the improved hash
table capacity to a current capacity of the first hash table
(which may be the initial capacity). In these embodiments, if
the improved hash table capacity is greater than or equal to the
current capacity, the application 111 may determine that a
hash table resizing operation should not occur. It should be
appreciated that the determination of whether a hash table
resizing operation should occur can also be made in other
suitable ways. If it is determined at the decision block 310 that
a hash table resizing operation should not occur, the process
300 proceeds to block 312. At block 312, the application 111
continues to use the first hash table. At block 320, the appli-
cation 111 stores an indicator of the improved hash table
capacity in the application cache 132.

Ifitis determined at the decision block 310 that a hash table
resizing operation should occur, the process 300 proceeds to
block 314. At block 314, the application 111 creates a second
hash table with the improved hash table capacity. In general,
the second hash table can otherwise be created in similar
fashion to the first hash table. At block 316, the application
111 copies each entry in the first hash table to the second hash
table. At block 318, the application 111 uses the second hash
table in place of the first hash table. In a typical embodiment,
the application 211 allows portions of the memory 104 allo-
cated to the first hash table to be reclaimed by the information
handling system 100 (e.g., after garbage collection has
occurred).

Advantageously, in certain embodiments, the improved
hash table capacity enables hash table operations to be per-
formed by the information handling system 100 faster and
more efficiently. Moreover, overall performance and memory
utilization by the information handling system 100 and by the
application 111 can be greatly improved. At block 320, the
application 111 stores an indicator of the improved hash table
capacity in the application cache 132. The indicator can be,
for example, the improved hash table capacity, a code or value
from which the improved hash table capacity can be deter-
mined, and/or the like.

Although various embodiments of the method and appara-
tus of the present invention have been illustrated in the
accompanying Drawings and described in the foregoing
Detailed Description, it will be understood that the invention
is not limited to the embodiments disclosed, but is capable of

US 9,405,699 B1

11

numerous rearrangements, modifications and substitutions
without departing from the spirit of the invention as set forth
herein.

What is claimed is:

1. A method comprising, by a computer system comprising
computer hardware:

initiating execution of an application in an execution envi-

ronment of the computer system, the application utiliz-
ing a hash table data structure to map a plurality of keys
to a plurality of values;

during the execution, the application checking a memory

for a cached hash table capacity indicator from a previ-

ous run of the application in the execution environment;

responsive to no cached hash table capacity indicator being

found in the memory:

creating a first hash table with an initial capacity;

populating the first hash table with a plurality of runtime
entries;

determining an improved hash table capacity based, at
least in part, on a quantity of the plurality of runtime
entries, wherein the improved hash table capacity is a
reduced capacity relative to the initial capacity;

creating a second hash table with the improved hash
table capacity;

copying the plurality of runtime entries to the second
hash table; and

the application using the second hash table in place of
the first hash table.

2. The method of claim 1, comprising storing an indicator
of the improved hash table capacity in the memory.

3. The method of claim 2, comprising updating the stored
indicator during the execution of the application.

4. The method of claim 1, wherein the stored indicator
comprises the improved hash table capacity.

5. The method of claim 1, comprising, responsive to at least
one cached hash table capacity indicator being found in the
memory:

creating a hash table with a capacity that is based, at leastin

part, on the at least one cached hash table capacity indi-
cator; and

the application using the hash table during the execution.

6. The method of claim 1, comprising:

initiating a subsequent execution of the application in the

execution environment;

during the subsequent execution, checking the memory for

a cached hash table capacity indicator from a previous

run of the application in the execution environment; and

responsive to the indicator of the improved hash table

capacity being found in the memory:

creating a hash table with the improved hash table capac-
ity; and

the application using the hash table during the subse-
quent execution.

7. The method of claim 1, wherein:

the application comprises an agent that instruments classes

of a target computer program; and

the plurality of runtime entries comprise an entry for each

class.

8. An information handling system comprising:

a processing unit, wherein the processing unit is operable

to implement a method comprising:

initiating execution of an application in an execution
environment of the information handling system, the
application utilizing a hash table data structure to map
a plurality of keys to a plurality of values;

5

10

15

20

25

30

35

40

45

50

55

[

0

65

12

during the execution, the application checking a
memory for a cached hash table capacity indicator
from a previous run of the application in the execution
environment;
responsive to no cached hash table capacity indicator
being found in the memory:
creating a first hash table with an initial capacity;
populating the first hash table with a plurality of runt-
ime entries;

determining an improved hash table capacity based, at
least in part, on a quantity of the plurality of runt-
ime entries, wherein the improved hash table
capacity is a reduced capacity relative to the initial
capacity;

creating a second hash table with the improved hash
table capacity;

copying the plurality of runtime entries to the second
hash table; and

the application using the second hash table in place of
the first hash table.

9. The information handling system of claim 8, the method
comprising storing an indicator of the improved hash table
capacity in the memory.

10. The information handling system of claim 9, the
method comprising updating the stored indicator during the
execution of the application.

11. The information handling system of claim 8, wherein
the stored indicator comprises the improved hash table capac-
ity.

12. The information handling system of claim 8, the
method comprising, responsive to at least one cached hash
table capacity indicator being found in the memory:

creating a hash table with a capacity that is based, at least in

part, on the at least one cached hash table capacity indi-
cator; and

the application using the hash table during the execution.

13. The information handling system of claim 8, the
method comprising:

initiating a subsequent execution of the application in the

execution environment;

during the subsequent execution, checking the memory for

a cached hash table capacity indicator from a previous

run of the application in the execution environment; and

responsive to the indicator of the improved hash table
capacity being found in the memory:

creating a hash table with the improved hash table capac-
ity; and

the application using the hash table during the subse-
quent execution.

14. The information handling system of claim 8, wherein:

the application comprises an agent that instruments classes

of a target computer program; and

the plurality of runtime entries comprise an entry for each

class.

15. A computer-program product comprising a non-transi-
tory computer-usable medium having computer-readable
program code embodied therein, the computer-readable pro-
gram code adapted to be executed to implement a method
comprising:

initiating execution of an application in an execution envi-

ronment, the application utilizing a hash table data struc-

ture to map a plurality of keys to a plurality of values;
during the execution, the application checking a memory
for a cached hash table capacity indicator from a previ-
ous run of the application in the execution environment;
responsive to no cached hash table capacity indicator being
found in the memory:

US 9,405,699 B1

13

creating a first hash table with an initial capacity;

populating the first hash table with a plurality of runtime
entries;

determining an improved hash table capacity based, at
least in part, on a quantity of the plurality of runtime
entries, wherein the improved hash table capacity is a
reduced capacity relative to the initial capacity;

creating a second hash table with the improved hash
table capacity;

copying the plurality of runtime entries to the second 10

hash table; and
the application using the second hash table in place of
the first hash table.

16. The computer-program product of claim 15, the
method comprising storing an indicator of the improved hash
table capacity in the memory.

17. The computer-program product of claim 16, the
method comprising updating the stored indicator during the
execution of the application.

18. The computer-program product of claim 15, wherein
the stored indicator comprises the improved hash table capac-

ity.

14

19. The computer-program product of claim 15, the
method comprising, responsive to at least one cached hash
table capacity indicator being found in the memory:

creating a hash table with a capacity that is based, at least in

part, on the at least one cached hash table capacity indi-
cator; and

the application using the hash table during the execution.

20. The computer-program product of claim 15, the
method comprising:

initiating a subsequent execution of the application in the

execution environment;

during the subsequent execution, checking the memory for

a cached hash table capacity indicator from a previous
run of the application in the execution environment; and

responsive to the indicator of the improved hash table

capacity being found in the memory:

creating a hash table with the improved hash table capac-
ity; and

the application using the hash table during the subse-
quent execution.

#* #* #* #* #*

